Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Antiviral Res ; 213: 105586, 2023 05.
Article in English | MEDLINE | ID: covidwho-2287615

ABSTRACT

S-217622 (Ensitrelvir) is a reversible severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) 3-chymotrypsin-like protease (3CLpro) inhibitor which obtained emergency regulatory approval in Japan for the treatment of SARS-CoV-2 infection on Nov 22, 2022. Herein, analogs of S-271622 with deuterium-for-hydrogen replacement were synthesized for comparison of the antiviral activities and pharmacokinetic (PK) profiles. Compared to the parent compound, C11-d2-S-217622 compound YY-278 retained in vitro activity against 3CLpro and SARS-CoV-2. X-ray crystal structural studies showed similar interactions of SARS-CoV-2 3CLpro with YY-278 and S-271622. The PK profiling revealed the relatively favorable bioavailability and plasma exposure of YY-278. In addition, YY-278, as well as S-217622, displayed broadly anti-coronaviral activities against 6 other coronaviruses that infect humans and animals. These results laid the foundation for further research on the therapeutic potential of YY-278 against COVID-19 and other coronaviral diseases.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Humans , Antiviral Agents/therapeutic use , Japan , Protease Inhibitors/chemistry
2.
J Med Chem ; 65(4): 2785-2793, 2022 02 24.
Article in English | MEDLINE | ID: covidwho-2253698

ABSTRACT

The outbreak of coronavirus disease 2019 (COVID-19) has resulted in a global pandemic due to the rapid spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). At the time of this manuscript's publication, remdesivir is the only COVID-19 treatment approved by the United States Food and Drug Administration. However, its effectiveness is still under question due to the results of the large Solidarity Trial conducted by the World Health Organization. Herein, we report that the parent nucleoside of remdesivir, GS-441524, potently inhibits the replication of SARS-CoV-2 in Vero E6 and other cell lines. Challenge studies in both an AAV-hACE2 mouse model of SARS-CoV-2 and in mice infected with murine hepatitis virus, a closely related coronavirus, showed that GS-441524 was highly efficacious in reducing the viral titers in CoV-infected organs without notable toxicity. Our results support that GS-441524 is a promising and inexpensive drug candidate for treating of COVID-19 and other CoV diseases.


Subject(s)
Adenosine/analogs & derivatives , Antiviral Agents/pharmacology , COVID-19 Drug Treatment , Disease Models, Animal , Adenosine/chemistry , Adenosine/metabolism , Adenosine/pharmacology , Animals , Antiviral Agents/chemistry , Antiviral Agents/metabolism , COVID-19/metabolism , COVID-19/pathology , Cells, Cultured , Chlorocebus aethiops , Dose-Response Relationship, Drug , Humans , Male , Mice , Mice, Inbred BALB C , Microbial Sensitivity Tests , Molecular Structure , Structure-Activity Relationship
4.
Eur J Med Chem ; 249: 115113, 2023 Mar 05.
Article in English | MEDLINE | ID: covidwho-2178285

ABSTRACT

Coronaviruses (CoVs) infect a broad range of hosts, including humans and various animals, with a tendency to cross the species barrier, causing severe harm to human society and fostering the need for effective anti-coronaviral drugs. GS-441524 is a broad-spectrum antiviral nucleoside with potent anti-CoVs activities. However, its application is limited by poor oral bioavailability. Herein, we designed and synthesized several conjugates via covalently binding NSAIDs to 5'-OH of GS-441524 through ester bonds. The ibuprofen conjugate, ATV041, exhibited potent in vitro anti-coronaviral efficacy against four zoonotic coronaviruses in the alpha- and beta-genera. Oral-dosed ATV041 resulted in favorable bioavailability and rapid tissue distribution of GS-441524 and ibuprofen. In MHV-A59 infected mice, ATV041 dose-dependently decreased viral RNA replication and significantly reduced the proinflammatory cytokines in the liver and the lung at 3 dpi. As a result, the MHV-A59-induced lung and liver inflammatory injury was significantly alleviated. Taken together, this work provides a novel drug conjugate strategy to improve oral PK and offers a potent anti-coronaviral lead compound for further studies.


Subject(s)
Coronavirus Infections , Coronavirus , Animals , Humans , Mice , Ibuprofen/pharmacology , Cell Line , Coronavirus Infections/drug therapy , Virus Replication , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Anti-Inflammatory Agents, Non-Steroidal/therapeutic use , Anti-Inflammatory Agents/pharmacology , Nucleotides/pharmacology
5.
Sci Transl Med ; 14(661): eabm7621, 2022 09 07.
Article in English | MEDLINE | ID: covidwho-1846322

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus driving the ongoing coronavirus disease 2019 (COVID-19) pandemic, continues to rapidly evolve. Because of the limited efficacy of vaccination in prevention of SARS-CoV-2 transmission and continuous emergence of variants of concern (VOCs), orally bioavailable and broadly efficacious antiviral drugs are urgently needed. Previously, we showed that the parent nucleoside of remdesivir, GS-441524, has potent anti-SARS-CoV-2 activity. Here, we report that esterification of the 5'-hydroxyl moieties of GS-441524 markedly improved antiviral potency. This 5'-hydroxyl-isobutyryl prodrug, ATV006, demonstrated excellent oral bioavailability in rats and cynomolgus monkeys and exhibited potent antiviral efficacy against different SARS-CoV-2 VOCs in vitro and in three mouse models. Oral administration of ATV006 reduced viral loads and alleviated lung damage when administered prophylactically and therapeutically to K18-hACE2 mice challenged with the Delta variant of SARS-CoV-2. These data indicate that ATV006 represents a promising oral antiviral drug candidate for SARS-CoV-2.


Subject(s)
COVID-19 Drug Treatment , Prodrugs , Adenosine/therapeutic use , Adenosine Monophosphate/analogs & derivatives , Animals , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Mice , Prodrugs/pharmacology , Prodrugs/therapeutic use , Rats , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL